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Abstract

This paper provides a meta-analysis of macroeconomic, quantitative studies that seek to
identify the causal impact of automation and artificial intelligence (AI) on employment in the
European Union (EU). We contribute an EU-focused synthesis that concentrates on macro-
level evidence, complementing a literature dominated by micro task-based analyses and
broader cross-country discussions. Using an Al-assisted workflow for search, screening, and
extraction with human oversight, we map the available evidence and report clear
methodological and knowledge gaps. A central finding is that the automation and robotics
literature is comparatively developed, while credible causal macro evidence on Al itself
remains sparse and fragmented. We treat this scarcity as a result that motivates a concrete
research agenda. Across the core empirical studies and selected grey literature, the net
employment effect appears modestly positive on the order of 1.5 to 2.0 percent, but the
distributional pattern is uneven. Risks concentrate among low-skilled and routine workers,
older cohorts, and lagging regions, pointing to policy priorities in reskilling, education, and
digital infrastructure. Methodologically, the paper demonstrates how LLM-assisted procedures
can improve transparency, consistency, and scalability in early-stage evidence synthesis where
conventional meta-regression is premature.
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1. Introduction

Automation and Al technologies are transforming industries globally, with significant
implications for employment. While these technologies promise increased productivity and
new job creation, they also raise concerns about workforce displacement. Despite extensive
research, there is no consensus on their net impact on employment. This paper conducts a meta-
analysis of empirical studies to determine the effects of automation and Al on employment
outcomes in the EU. Using an Al-assisted workflow that applies large language models to
support literature screening and data extraction, with human oversight, we synthesize the
available evidence on this policy issue.

A central goal of this paper is to address the primary research question: What is the impact of
automation and Al on employment within the EU, as evidenced by empirical research? This
question is particularly pertinent given the existing research gap, to our knowledge, no prior
meta-analysis has specifically synthesized the causal effects of automation and Al on
employment in the EU. Furthermore, while the literature abounds with experimental and
survey-based studies examining the micro-level impacts of automation and Al on specific jobs
and tasks, and numerous speculative discussions offer various perspectives, there is a relative
scarcity of empirical research using macroeconomic data and variables to assess the broader
employment effects. This meta-analysis focuses specifically on synthesizing these
comparatively fewer, but crucial, macroeconomic studies that employ prehensive and data-
driven perspective on this issue.

This paper makes three contributions. First, it provides the first EU focused scoping meta-
analysis of macroeconomic quantitative studies that aim to identify the causal employment
effects of automation and Al, thereby addressing a gap left by broader and predominantly non-
EU syntheses. Second, it documents that while the automation and robotics evidence base is
relatively mature, credible causal macro evidence on AI’s labour market impacts in the EU
remains sparse and fragmented, and we treat this scarcity as a central result that motivates a
clear research agenda. Third, we introduce and validate an Al assisted workflow for evidence
synthesis, combining large language model supported screening and extraction with human
oversight and reporting inter rater reliability metrics to enhance transparency, scalability, and
replicability in early-stage meta analytic research.

The paper proceeds with a literature review that identifies the research gap, a description of the
methodology of the Al-assisted meta-analysis methodology, presentation of the results, a
discussion of the findings and their implications, and concluding remarks.

Given the rapid evolution of artificial intelligence technologies and the relative scarcity of
macroeconomic causal studies on their labour market impacts, this study should be understood
as a meta-analysis which is an early-stage synthesis intended to map the current evidence
landscape rather than deliver conclusive estimates. The aim is to assess the state of knowledge
and highlight where gaps persist in empirical research on automation and Al in the European
labour market. In doing so, this study also serves as a methodological demonstration,
showcasing how Al-assisted workflows, including large language models used for screening,



extraction, and evaluation can enhance meta-analytical research efficiency and consistency in
underdeveloped fields of economics. This approach complements more traditional meta-
analyses and offers a flexible framework for evidence synthesis in emerging domains where
conventional techniques may be premature or infeasible (cf. Terzidis et al. 2019, Vivarelli 2014,
and Guarascio et al. 2024).

2. Theoretical Framework: Technological Displacement and Complementarity

This study is grounded in two key economic theories of technological change: the technological
displacement hypothesis and the complementarity (or task-based) perspective. The
displacement view, tracing back to Keynes (1930) and extended by Acemoglu and Restrepo
(2019, 2020), suggests that automation reduces labour demand by replacing human workers-
especially in routine tasks. In contrast, the complementarity perspective argues that
technological progress creates new tasks and roles for human labour, particularly in high-skill
sectors, potentially offsetting job losses (Acemoglu & Restrepo, 2019).

The theory of technological unemployment, as initially posited by Keynes (1930), suggests
that automation leads to job losses as machines replace human labour. This perspective has
gained renewed traction with contemporary advances in robotics and Al. Acemoglu and
Restrepo (2020) demonstrated the displacement effects of industrial robots in the United States,
finding that each additional robot per 1,000 workers reduces employment and wages. These
effects are particularly concentrated in manufacturing-heavy regions, impacting low- and
medium-skilled labour. Georgieff and Hyee (2022) provide cross-country evidence supporting
this view, showing a negative correlation between Al exposure and growth in hours worked in
occupations requiring limited digital skills. They argue that while partial automation can
increase productivity, the direct displacement of workers often outweighs potential benefits for
those unable to adapt. Du (2024) further emphasizes the potential for automation and Al to
reshape employment structures, discussing skill-biased technological change and its
implications for income inequality. While highlighting the disproportionate risks for low-
skilled workers, the author underscores the importance of proactive policies such as education,
training, and innovation to mitigate these effects.

Countering the technological unemployment narrative, proponents of automation and Al
emphasize their potential for job creation and economic growth. The reinstatement effect, as
articulated by Acemoglu and Restrepo (2018, 2019), suggests that automation creates new
tasks where human labour retains a comparative advantage, potentially offsetting displacement
and even increasing labour demand. This echoes historical precedents, such as the Industrial
Revolution, where initial job losses were eventually followed by innovation and new
employment opportunities. Empirically, Liu (2024) found a negative correlation between Al
adoption and unemployment rates across multiple sectors, suggesting that technological
progress can stimulate new economic opportunities. Georgieff and Hyee (2022), while
acknowledging displacement in some areas, also found that in occupations with high computer
use, Al exposure is associated with employment growth, attributed to productivity gains in non-
automatable tasks. Du (2024) also highlights the emergence of new high-tech sectors requiring
advanced skills, which create new employment opportunities. However, the key point of



contention is whether these job creation effects are sufficient to offset the potential
displacement effects, a question our meta-analysis directly addresses.

These frameworks help explain the heterogeneity observed in empirical findings. For instance,
the observed polarization in labour markets such as job losses in routine-intensive sectors and
gains in knowledge-intensive sectors can be seen as a reflection of skill-biased technological
change (SBTC), a recurring theme in both theoretical and empirical research (Autor, Levy, &
Murnane, 2003; Vivarelli, 2014). Moreover, analysis of the latent structure of reported effects
points to two main sources of variation that can be examined empirically: a structural-temporal
gradient-capturing differences between single-country and EU-wide settings and changes over
time-and a methodological axis-capturing variation linked to the strength and type of
identification. Viewed through the displacement versus task-based complementarity lens, this
mapping helps explain why estimates tend to be more negative in routine-intensive,
manufacturing-oriented contexts and more offsetting where AI/ICT intensity and non-routine
task content are higher (Acemoglu & Restrepo, 2019; Autor, Levy, & Murnane, 2003;
Georgieff & Hyee, 2022; Vivarelli, 2014). Positioning the meta-analysis within these
theoretical perspectives links disparate empirical results to broader economic models and
provides a structured account of how automation and Al shape employment patterns in the EU;
the empirical section that follows evaluates heterogeneity along these two axes (see also Ugur
et al., 2018; Guarascio et al., 2024).

3. Literature Review

The impact of automation and artificial intelligence on the labour market has become a central
topic of discussion in economics, sociology, and policy circles. The increasing prevalence of
automated systems and Al technologies across various sectors sparked a wide-ranging debate
about their potential consequences for employment. While some predict widespread job
displacement and technological unemployment, others argue that these technologies will
primarily augment human capabilities, create new types of jobs, and drive economic growth.

3.1 Meta-Analyses on the Employment Effects of Automation and Al

Empirical research examining the macroeconomic impact of automation and Al on
employment presents an ambiguous picture, revealing a division between the potential for
productivity gains and the risk of job displacement. Several meta-analyses sought to synthesize
this evidence. Terzidis et al. (2019), in a meta-analysis of 91 studies, found that automation and
trade generally benefit wages and employment in advanced economies. However, their analysis
revealed a significant skill bias, with technology primarily benefiting high-skilled workers,
thus potentially increasing labour market polarization. This skill-biased impact is a recurring
theme in the literature. Vivarelli (2014) in his meta-analysis similarly argued that technological
progress, while driving growth in knowledge-intensive sectors, can simultaneously displace
workers in routine-intensive occupations, disproportionately affecting low- and medium-
skilled individuals. Ugur et al. (2018) further emphasized the importance of distinguishing
between process innovations (often labour-saving) and product innovations (more likely to be
employment-enhancing). Their meta-regression analysis highlighted the heterogeneous net



employment effects of innovation, noting that these effects are generally small and influenced
by factors like labour market and product market regulation.

However, the magnitude of job displacement due to automation remains unclear. Guarascio et
al. (2024), in their meta-analysis of 33 studies focusing specifically on robotization, found
negligible aggregate effects on employment and wages. They attributed this to compensatory
mechanisms, such as the creation of new complementary jobs and increased efficiency, which
offset initial job losses. This finding contrasts somewhat with studies focusing on broader
forms of automation and Al, such as those by Terzidis et al. (2019) and Vivarelli (2014), where
amore pronounced skill-biased impact and labour market polarization are observed, suggesting
that the specific type of technology considered may play a crucial role in determining
employment outcomes. Klump et al. (2023) further contribute to this nuanced picture by
examining the wage effects of industrial robots, finding limited direct impacts on overall wage
levels but modest and less observable effects of skill-biased effects when disaggregated by
sector and skill group. They observed that automation in manufacturing tends to be associated
with more negative wage effects, while non-manufacturing industries may experience slightly
more positive outcomes. This highlights the importance of considering sectoral and skill-
specific impacts, though the overall magnitude of these effects remains limited. Dagli (2021)
further supports the idea of a more moderate impact, concluding that the overall effect of
technology on employment is moderately positive.

These meta-analyses, while providing valuable insights, differ in their methodologies, scope
(e.g., focus on robots vs. broader automation), and the specific time periods and regions
considered. For example, while Terzidis et al. (2019) included a large number of studies
spanning various advanced economies, Guarascio et al. (2024) focused specifically on
robotization and a smaller set of studies. These differences in methodology and scope may
explain some of the discrepancies in their findings. Critically, none of these meta-analyses
explicitly focus on synthesizing the causal impact of automation and AI on employment within
the EU using a rigorous selection of macro-level studies, which is the specific contribution of
our research.

3.2 Grey Literature Insights into the Impact of Automation and AI on Employment in the
EU

Grey literature, including reports and publications from organizations like the OECD, ILO,
PwC, and WEF, provides insights into the practical implications of automation and Al on
labour markets, particularly within the EU. These reports often focus on current trends, sectoral
dynamics, and policy considerations, complementing academic research. This section
synthesizes key findings from this grey literature, focusing on the ongoing debate regarding
the impact of automation and Al on employment. While some reports emphasize the potential
for productivity gains and limited aggregate employment effects, others highlight concerns
about sectoral job displacement, increasing inequality, and the need for proactive policy
interventions. This review of grey literature contributes to answering the research question.



Several reports suggest that the aggregate employment impact of Al has been relatively limited
so far, with a primary effect of task reorganization rather than widespread job displacement
(OECD, 2021). This perspective aligns with findings from European Central Bank (Albanesi
et al., 2023), which found evidence of employment growth in Al-exposed occupations across
several European countries, particularly benefiting younger and more skilled workers,
consistent with the Skill Biased Technological Change (SBTC) framework. However, this
aggregate view masks significant sectoral and regional variations. The International Labour
Organization working paper (Carbonero et al., 2018) highlights job displacement in
manufacturing-heavy regions due to robot adoption, partially offset by job creation in the
service sector. The consulting firm PwC (Hawksworth et al., 2018) further emphasizes these
sectoral differences, identifying distinct "waves of automation" with varying impacts across
sectors like financial services, logistics, and manufacturing. These variations underscore the
importance of considering sectoral context when assessing the impact of automation and Al.
Moreover, the International Labour Organization working paper (Gmyrek et al., 2023)
highlights that these effects are not evenly distributed across demographic groups, with women
and low-income workers facing greater automation risks, exacerbating existing inequalities.

While concerns about job displacement persist, the grey literature also emphasizes the potential
for Al-driven productivity gains and job creation. Another report by PwC (2024) ‘Al Jobs
Barometer’ reports a significant wage premium for Al-related skills, indicating growing
demand for technical expertise. Another OECD study (2023) links Al adoption to increased
productivity in knowledge-intensive sectors, suggesting that Al can augment human
capabilities and create new roles. World Economic Forum (2023) in their vital study further
emphasizes the emergence of new Al-related professions, such as Al specialists and data
analysts. A working paper by European Central Bank (Albanesi et al., 2023) reinforces this
view by highlighting how Al-driven task augmentation has primarily benefited high-skilled
workers, fostering job creation in areas requiring human-Al collaboration. However, a key
question remains: do these productivity gains and new job opportunities sufficiently
compensate for potential job displacement? This is a central question that our meta-analysis
seeks to address.

3.3 Research Gap and the Need for a Meta-Analysis

While the preceding review highlighted the extensive body of research on the relationship
between technology and employment, a critical gap persists in the literature: a synthesis of the
causal macroeconomic effects of automation and Al technologies on aggregate employment
within the EU. This meta-analysis offers a powerful approach to address this limitation by
statistically combining the results of multiple studies, thereby increasing statistical power and
providing a more precise and reliable estimate of the overall effect.

Furthermore, much of the existing literature comprises micro-level studies examining the
impact of automation on specific tasks or within individual firms, or speculative discussions
based on theoretical models, case studies, or macroeconomic projections. While these
contributions are valuable for understanding specific mechanisms or potential future trends,
they do not provide a comprehensive understanding of the aggregate employment effects at the



macroeconomic level. Our meta-analysis addresses this limitation by specifically focusing on
empirical studies that utilize macroeconomic data and methodologies to assess the broader
labour market dynamics.

Moreover, there is a lack of a dedicated meta-analysis focusing specifically on the EU. The
EU's unique labour market institutions, social welfare systems, and strong emphasis on digital
transformation make it a crucial context for investigation. These specific characteristics may
influence the relationship between automation/Al and employment in ways that differ from
other regions.

To summarize, while previous meta-analyses such as Terzidis et al. (2019), Vivarelli (2014),
and Guarascio et al. (2024) have provided important insights into the employment effects of
automation, these studies have varied significantly in terms of scope, geographic coverage, and
methodological rigor. Notably, none of these analyses focused explicitly on the causal
macroeconomic effects of automation and Al on employment within the European Union.

In contrast, this study adopts a meta-analysis approach tailored to an emerging research area
such as the causal labour market effects of automation and artificial intelligence. The use of
this approach is justified not only by the limited number of qualifying empirical studies, but
also by the high degree of methodological heterogeneity and geographical imbalance observed
in the literature. These features make a full statistical meta-regression inappropriate at this stage
and instead call for a mapping and structuring of the available evidence base.

Furthermore, this study introduces a novel own Al-assisted methodology, demonstrating the
feasibility of using large language models to support systematic screening, data extraction, and
classification tasks in meta-research. This methodological innovation responds to growing
interest in improving the efficiency and transparency of literature synthesis (Reason et al.,
2024; Lam Hoai & Simonart, 2023).

Finally, this work addresses persistent policy and research gaps. It documents the regional
disparities in technological adoption within the EU, the uneven distribution of Al-related
employment effects, and the insufficient causal evidence on Al itself as distinct from
automation more generally. These gaps have critical implications for labour market forecasting,
inequality, and digital policy across the EU. The study therefore aims not only to synthesize
what is known, but to inform future empirical research agendas and policy development.

4. Methods

This study adopts a meta-analysis framework, appropriate for synthesizing fragmented
evidence in emerging research areas. Unlike traditional statistical meta-analyses, which require
a large number of methodologically similar studies, scoping reviews aim to map the range and
characteristics of available research, identify gaps, and inform future inquiry. Given the limited
number of qualifying causal studies on Al and employment in the EU, and the substantial
heterogeneity in research design, outcome measures, and data sources, a full meta-regression
is neither feasible nor methodologically appropriate. Instead, this study offers a structured, Al-



assisted synthesis, a replicable early-stage approach suitable for underdeveloped economic
domains (DeSimone, 2021).

4.1 Al-assisted meta-analysis

Meta-analyses are indispensable tool for synthesizing evidence from multiple studies to inform
policy, practice and further research (Uman, 2011; Field & Gillett, 2010). However, the
conventional meta-analysis process is time-consuming and resource intensive. Artificial
intelligence, and specifically large language models (LLMs), open a doorway to possibly
immense improvement. Generative Al has already demonstrated capabilities in increasing
research productivity (Tomczyk et al., 2024) and holds significant potential for streamlining
meta-analysis workflows (Lam Hoai & Simonart, 2023; Michelson et al., 2020; Reason et al.,
2024). Therefore, this section outlines a structured workflow proposal designed to integrate
generative Al into meta-analysis.

To structure the integration of generative Al, we developed an Al-assisted workflow for meta-
analysis. This workflow assumes using custom chat-based Al agents, as well as large language
models directly, i.e. locally or through API connection. Table 1 outlines the division of tasks
between human researchers and generative Al across six key phases of meta-analysis. As
shown, the workflow is based on human-Al collaboration through the entire process. In the
Defining phase, while researchers direct the project and define research questions, Al supports
brainstorming and refining these questions. For Search, human researchers conduct database
searches and prepare datasets, complemented by Al tools for semantic search and generating
search strings. During Screening and Selection, humans devise and iteratively refine prompts
for classification, while Al assists by suggesting criteria, and most importantly, classifying and
extracting data from abstracts. In Data Extraction, researchers decide on data to be extracted
and prepare workflows, while Al performs the extraction itself. For Data Analysis, researchers
review and interpret findings, with Al supporting the writing of analysis scripts. Finally, in the
Writing Phase, while researchers write the report, Al provides support for paper outlining. This
task division highlights a model where Al tools augment, rather than replace, the researcher's
role at each stage of the meta-analysis process, significantly improving productivity of the
entire process.

Table 1. Task split between human researcher and LLM on each step of meta-analysis

Creating and preparing
datasets;

Task group Human Generative Al
Defining Directing the research Support brainstorming and ideation;
project, creating research Support refining and wording
questions; research questions;
Defining inclusion and Writing search strings;
exclusion criteria;
Search Running databases search; Semantic search tools;

Writing search strings;

Screening and
selection

Devising prompts for
classification and extraction
tasks;

Iterative testing prompts;

Suggesting and reviewing
inclusion/exclusion criteria;
Delete duplicates;




e  Selecting papers; e Classification and extraction of data

e Download papers (pdfs from abstracts;
storage);
Data Extraction e Decide on data to be e  Extracts data from papers;
extracted;

e  Prepare data extraction
workflows and scripts;
e  Verify extracted data;

Data analysis e Review data analysis; e  Write scripts or code for data
e Interpret findings; analysis;
Writing e  Write the report or paper; e  Support paper or report writing;

Source: own elaboration.

Screening abstracts against predefined inclusion and exclusion criteria is a particularly labour-
intensive and time-consuming stage in meta-analysis. However, large language models (LLMs)
offer a significant opportunity to dramatically enhance efficiency in this task. Indeed, studies
indicate substantial workload reductions using Al-based tools for abstract screening (Chai et
al., 2021). Moreover, empirical observations from our development process highlight the
remarkable time savings: screening 30 abstracts took approximately 55 minutes (human
reviewer 1) and about 35 minutes (human reviewer 2), while GPT-40 accomplished the same
task in about 1.5 minutes. These, while not admissible, indicate a possible productivity increase
in the magnitude of 23-37 times. Our quick test was run on a sample of 30 abstracts, while in
actual meta-analyses screeners need to review thousands. Beyond speed, human screeners
often experience tiredness and reduced focus after extended periods, increasing the likelihood
of errors in this demanding and detail-oriented task. In contrast, Al offers consistent and rapid
processing, potentially minimizing errors associated with human fatigue. Our approach to
LLM-based screening involves several key steps. First, researchers establish clear inclusion
and exclusion criteria. Second, a step-by-step screening process is designed to guide the LLM.
Crucially, specific prompts are developed and iteratively refined to ensure accurate
classification. We propose employing a Boolean classification system, categorizing abstracts
as "yes," "
alignment with the criteria. Edge cases could be classified as "maybe" and later reviewed by

no" (e.g. relevant or irrelevant to the meta-analysis research questions) based on their

human researchers to maintain oversight. Furthermore, prompts can be designed to extract
specific data points concurrently with the classification decision. For instance, the LLM can be
instructed to identify the study's country and research method used. That data can be later used
to exclude unfitting studies from the meta-analysis.

Data extraction, the systematic collection of specific information like effect sizes and outcome
measures from selected studies, is another critical phase in meta-analysis. Traditional manual
data extraction is not only time-consuming but also prone to human error (Ortiz et al., 2021).
Generative Al offers a promising solution to enhance both the efficiency and accuracy of this
process. Recent research indicates that Al-driven data extraction can achieve impressive
accuracy rates, reaching up to 99% in some tasks (Reason et al., 2024). For optimal results in
large-scale data extraction, we recommend adopting a methodology similar to that of Reason
et al. (2024). Their approach emphasizes sequential extraction in structured segments, ensuring
both systematic data retrieval and high precision.




While the proposed Al-assisted workflow enhances the efficiency of evidence synthesis, it is
particularly valuable in nascent fields where research is still maturing. In such contexts, it
provides a structured yet flexible alternative to formal meta-regression, supporting evidence
mapping, gap identification, and policy-relevant aggregation of findings.

4.2 Data collection

A systematic search strategy was employed to identify relevant studies examining the impact
of automation and Al on employment within the EU. Multiple databases and search methods
were used to ensure broad coverage of the existing literature, following recommendations for
comprehensive literature syntheses (DeSimone et al., 2021; Gusenbauer & Haddaway, 2020;
Martin-Martin et al., 2021; Mongeon & Paul-Hus, 2016). String searches were conducted in
EBSCOhost, Scopus, and Web of Science. Complementary manual searches were performed
in Google Scholar, Semantic Scholar, and Google to identify additional relevant publications
and grey literature. These searches aimed to identify any potentially relevant studies not
captured by the database searches. We also consulted the reference lists of included studies and
known relevant publications.

The search strategy focused on identifying studies examining the impact of automation and Al
on employment. Keywords related to automation and Al were combined with keywords related
to employment using Boolean operators (AND, OR). Initial searches yielded many results,
indicating the need for refinement. We therefore excluded broader terms like "work" and
"workforce," limited the publication year to 2010-2024, added terms related to causal research,
and included only relevant publication types (article, proceeding paper, book chapters). Search
was conducted on 1.11.2024. This refined search strategy resulted in 2566 results from Web of
Science, 7383 from Scopus, 2179 from EBSCOhost.

The following lists of synonyms were used to ensure comprehensive coverage of relevant
terms:

e Automation and Al: automation, artificial intelligence, Al, robotics, machine learning,
automated systems, autonomous systems, intelligent systems, industry 4.0,
computerization, robotization, digitalization, technological change.

e Employment: employment, jobs, job displacement, job loss, job creation, labour
market, unemployment, skills.

e Impact: impact, influence, effect.

Duplicate records were identified and removed using a combination of DOI, title, and abstract
matching. The initial search process identified 12,128 records. Following the removal of
duplicates, the dataset was refined to 9,717 unique records. For the analysis presented in Part
II, which examines the impact of Al and automation on employment in the EU, 15 academic
articles were selected for review. Similarly, for the analysis in Part III, focusing on the impact
of Al and automation on labour migration and migrants within and to the EU, a curated
selection of relevant studies was reviewed.
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4.3 Screening

Following the data collection phase, a three-level screening process was implemented to select
studies relevant to our research question. This process combined the efficiency of LLM-based
screening with the judgment of human reviewers to ensure the inclusion of relevant studies,
efficiency and transparency of decisions made.

Level 1 screening was conducted using OpenAl's GPT-40 model. The LLM was tasked with
classifying abstracts based on three key criteria: thematic fit, causal study design, and
quantitative methodology. Complex prompts were developed and tested on a small sample of
studies before application to the database. Each criterion was assessed separately to reduce the
cognitive load on the LLM and increase accuracy. The following definitions were used:

e Thematic Fit: An abstract has thematic fit if it discusses the relationship between
automation and Al on employment.

e Causal Study: Studies that seek to measure the impact of one variable (Al adoption or
automation technology, X) on another (job displacement, employment levels, or labour
market conditions, Y), with a clear focus on causal inference.

¢ (Quantitative: Studies employing quantitative data and methods. These studies typically
include numerical data analysis, econometric or statistical modelling, and the use of
quantitative indicators. Studies that use real-world data to support their analysis.

Level 2 screening involved a combination of LLM-based data extraction and human filtering
of data. OpenAl's GPT-40 Mini model was used to extract the following information from
abstracts that passed Level 1 screening:

e Jocation including studies focused on any of European markets, excluding markets
outside of EU, global studies or without any geographical focus

¢ studied period including studies involving 2010-2024 period

¢ industry (criterion forfeited)

e technology studied including studies focused on automation, Al, industry 4.0, robotics,
excluding studies on other technologies, digital transformation

e cffect size measures including studies that measure impact of automation or Al on
employment; excluding studies that do not measure the impact (e.g. qualitative,
discussion or review papers)

e cconomic indicators used including studies that employ known economic indicators
(e.g. unemployment rate, vacancies, productivity metrics, automation investment
levels, Gini coefficient and others); excluding studies that do not use economic metrics.

Specific prompts were designed and tested on smaller sample of papers for each data point to
ensure accurate extraction. The extracted data was then used to filter studies based on our
inclusion criteria. Human reviewers then examined the LLM's extracted data and made final
decisions regarding inclusion based on these extracted data points. Discrepancies were resolved
through discussion.
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Level 3 screening was performed by two independent human reviewers. Reviewers assessed
both the abstract and the full text of studies that passed Level 2 screening to ensure they met
all inclusion criteria. A key focus at this stage was to confirm that the studies examined the
impact of Al on job displacement at a macro-level rather than micro-level analyses and that the
studies focused on causal inference and used econometric indicators. Discrepancies between
reviewers were resolved through discussion or consultation with a third reviewer.

The screening and filtering process allowed to select studies relevant to the meta-analysis. The
database reduction process was as follows:

e Starting number of papers in the database: 9,717 papers in the database

e After level 1 screening: 1,149 papers in the database

e After level 2 screening: 83 papers in the database

e After level 3 screening (final number of papers): 15 papers in the database.

Additionally, we identified 65 sources of grey literature through manual search of websites and
organizations and included 3 of them in the study. The same screening criteria were applied as
for papers. The study selection process is illustrated in the PRISMA flow diagram (Figure 1)
(Haddaway et al., 2022).
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Figure 1. PRISMA Flow diagram of studies search and screening

Identification of new studies via databases and regislers

Recards removed before screening:

c
S !
= - " " Duplicate records (n = 2.411)
3 Racares Hantlled from: Records marked as ineligible by automation
= Databases (n=12,128)
£ tools (n = 0)
ﬁ Records removed for other reasons (n = 0)
Records screened Records excluded
(n=9,717) (n=9,700)
I3 l -
= Reports sought for retrieval Reports not retrieved
s n=17) n=1)
@

l

Reports assessed for eligibility
n=16)

H

Reparts excluded:
(n=1)

New studies included in review
(n=18)

Identification of new studies via other methods

Records identified from:
Websites (n = 19)
Organisations (n =31)
Citation searching (n = 15)

Reports sought for retrieval

(n=65) ’
Reports assessed for eligibility

{n=685)

Repaorts of new included studies
n=3

Included

Source: Own elaboration based on Haddaway et al. (2022) software.

4.4 Inter-Rater Reliability for Human and AI Evaluations

Reports not retrieved
(n=0)

Reports excluded:
n=62

To evaluate the consistency between human and Al evaluations, we examined inter-rater
reliability across three separate evaluation tasks such as thematic fit, study causality, and study
“quantitativeness” - in which three human evaluators and one Al system coded each academic
abstract as “Yes” (1) or “No” (0) based on specific instructions. For each of the three tasks, we
performed Krippendorft’s alpha analyses at two levels:

e All Coders Individually: Comparing the three human evaluators and the Al

simultaneously.

e Human Consensus vs. Al: Pooling the human evaluators’ responses (e.g., averaging or
majority vote) into a single “human” code, then comparing it with the AI’s code.

Table 2. Consistency of abstracts classification and data extraction between team of three human evaluators
and Al (GPT 4o and 40-mini). Authors’ own elaboration.

Krippendorff’s alpha
Simple consistenc three human Krippendorff’s alpha
Type of task | Task scor[(:, ' gvaluators and Al (hlllll)‘l[;n team and[;&I)
individually)
Thematic fit 93% 0.66 0.83
Classification Causality 97% -0.04 -0.02
Quantitative 93% 0.78 0.87
Study Location 97% 0.9 0.9
Extraction Studied period 70% 0.15 0.21
Industry 80% 0.62 0.83

Source: own elaboration.

13



For thematic fit, the Krippendorff’s alpha among all four raters (three humans + Al) was 0.66,
indicating a moderate degree of inter-rater reliability. However, when the human evaluators’
responses were pooled and compared with the Al, alpha increased to 0.83, reflecting a higher
level of agreement once individual human variability was consolidated into a single consensus
code. The simple agreement rate between the aggregated human response and the Al was 93%,
suggesting that although the humans showed some internal differences, their collective
decision aligned closely with that of the Al. In contrast, study causality ratings yielded notably
low (negative) Krippendorff’s alpha values. When analysing all four raters together, alpha was
-0.043, and when comparing the pooled human response to the Al, alpha was -0.017.
Nevertheless, the simple agreement rate in this task was 97%, indicating that humans and the
Al rarely disagreed. The negative alpha values are largely attributable to the highly skewed
distribution of ratings, where nearly all coders selected the same category (0 or 1), making the
expected disagreement extremely small. Even a single divergent rating can inflate the observed
disagreement above the expected level, mathematically resulting in a negative alpha. For the
study “quantitativeness” assessment, alpha among all four raters was 0.78, indicating relatively
strong agreement at the individual-coder level. When the human evaluators’ responses were
pooled, the alpha value increased to 0.87 in comparison to the AI’s coding. The simple
agreement between this aggregated human judgment and the Al reached 93%, suggesting that
in determining whether a study is quantitative, the AI’s decisions broadly aligned with the
collective human perspective. Notably, when all the three classification criteria were pooled
(thematic fit, causality, and quantitativeness) into a single inclusion/exclusion outcome, the
final decisions made by humans and the AI matched 100% of the time. In other words, despite
some variability in individual ratings, the ultimate acceptance or rejection of each abstract was
fully concordant between the human team and the Al system.

Following the evaluation of abstract screening, we also assessed the inter-rater reliability of
human and Al performance in data extraction tasks. We examined three distinct data extraction
tasks: study location, studied period, and industry sector. Similar to the screening evaluations,
three human evaluators and one Al system (GPT-40 mini) independently extracted data from
abstracts, and we employed simple consistency rates and Krippendorff’s alpha to measure
agreement. For study location extraction, the simple consistency rate between human and Al
coders was 97%, indicating very high agreement. This strong consistency was further
supported by Krippendorff’s alpha. When considering all four raters individually, alpha
reached 0.9, meaning excellent inter-rater reliability. These results suggest that the Al system
can perform study location extraction with a level of consistency comparable to, and highly
aligned with, human evaluators. In contrast to study location, the studied period extraction task
showed lower inter-rater reliability. While the simple consistency rate was 70%, indicating a
moderate level of agreement, the Krippendorff’s alpha values were considerably lower. For all
four raters individually, alpha was 0.15, and for the human consensus versus Al, alpha was
0.21. These low alpha values suggest a weaker agreement among both human and Al coders in
extracting the studied period. The discrepancy between simple consistency and Krippendorff’s
alpha in this task may indicate that while coders frequently chose the same categories, the
agreement was not robust enough to account for chance, or that there was less clear consensus
on what constitutes the 'studied period' within the abstracts. Significant improvements should
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be made in the extraction prompt. For the industry sector extraction task, we observed moderate
to high inter-rater reliability. The simple consistency rate was 80%, suggesting good overall
agreement. Krippendorff’s alpha among all four individual raters was 0.62, indicating a
moderate level of agreement at the individual coder level. Importantly, when comparing the
pooled human response to the AI, Krippendorft’s alpha increased to 0.83, reflecting a
substantial improvement in agreement when individual human variability was accounted for.

Across these data extraction tasks, the Al system demonstrated varying degrees of alignment
with human evaluators. For clearly defined and relatively objective information, such as study
location, the Al achieved excellent inter-rater reliability, comparable to human consensus.
However, for more subjective or context-dependent information, like studied period and, to a
lesser extent, industry sector, the reliability was lower. These suggest the importance of task-
specific evaluation of Al performance in meta-analysis and show that while Al can be highly
effective for certain types of data extraction, human oversight and potentially refined prompts
may be necessary for tasks requiring more complex interpretation or contextual understanding.

Overall, our findings demonstrate a strong alignment between Al and human evaluators across
multiple dimensions, particularly when human judgments are aggregated. The high simple
agreement rates and particularly the 100% alignment on final inclusion/exclusion decisions
highlight the potential for Al-assisted evaluation processes to supplement or streamline
abstracts analysis efforts, provided that consensus or majority-rule approaches are used to
mitigate individual variability.

5. Data analysis

This section presents findings from a meta-analysis aimed at mapping the current early
empirical evidence on the macroeconomic impacts of automation and Al on employment in the
EU. Given the small number of qualifying studies and the high degree of heterogeneity in
research designs, outcome variables, and geographic focus, these results should not be
interpreted as the outcome of a formal meta-regression. Rather, they serve to organize existing
findings, identify recurring patterns, and highlight gaps in the literature. These limitations are
not methodological shortcomings but reflect the early stage of empirical research in this field
and point to clear priorities for future work.

5.1 Synthesized findings based on selected papers

The topic of Al and automation's impact on employment is of scientific importance due to its
far-reaching implications for labour markets, economic structures, and societal well-being.

The conducted meta-analysis aims to evaluate the impact of automation and Al on employment
by synthesizing findings from filtered 15 empirical quantitative and causal studies, addressing
the research question (RQ1): What is the impact of automation and Al on employment
according to existing empirical studies? The sample includes empirical studies that focus on
labour market effects of technological advancements, such as automation, robotics, and

15



digitalization, with data sourced from diverse geographical regions of the EU like Slovakia,
Hungary, Italy, Germany, and France.

The analysed studies collectively explore the impact of automation and Al on employment
across various dimensions, industries, and demographic groups. The research problems vary
but consistently address causal relationships between technology adoption and labour
outcomes, such as total employment, hiring rates, wages, job composition (by skill, age, or
gender), and inequality. For example, studies by Cords & Prettner (2022) and Dauth et al.
(2021) analyse the effects of automation capital and robot exposure on employment and wages,
while Albinowski & Lewandowski (2022) assess gender- and age-specific impacts of ICT and
robotics.

This analysis focuses on several key dimensions to understand the impact of automation and
Al on employment. The Key Findings section synthesizes major conclusions from studies,
noting both potential job displacement in traditional sectors and new job creation opportunities
in emerging fields. In the Methodology section, various research approaches, such as
longitudinal and case studies, are examined, detailing how data was gathered and interpreted.
Additionally, specific tools and techniques like econometric models and surveys are explored.
The Study Populations component assesses participant characteristics, highlighting those
working in industries significantly impacted by Al and examining the criteria for their
selection, such as occupation or geographic location. Finally, the Measures of Effects section
analyses employment-related variables, providing statistical outcomes such as changes in
unemployment rates, job type variations, and the rate of job creation due to Al, offering a
comprehensive view of its measurable impacts on the workforce.

Al and automation have diverse effects on employment, varying across sectors, skill levels,
and geographical contexts. While automation boosts productivity and innovation, its effects on
employment are often uneven. In manufacturing sectors, for instance, automation has led to a
decline in routine, low-skilled jobs, as seen in a 9.7% drop in manufacturing employment in
highly automated regions. At the same time, high-skilled jobs experience growth, as firms
require workers with technical expertise to operate and maintain automated systems. This shift
highlights the polarizing effect of automation: high-skilled employment increases, whereas
low-skilled workers face higher unemployment risks. For example, in Germany, high-skilled
job gains offset low-skilled job losses, showcasing how automation transforms the workforce
composition without necessarily reducing total employment (Wegrzyn, 2020).

However, the effects of Al and automation go beyond just manufacturing. In service sectors,
automation can create opportunities, leading to a 4.7% employment increase as tasks become
more efficient, and new roles emerge. Despite these positive effects, workers in manual and
repetitive occupations, such as assemblers and plant operators, face the greatest risk of
displacement, with automation risks reaching 18% (Cserhati and Takécs, 2019). Moreover,
regions with slower adoption of technology face competitive disadvantages, as seen in the 10%
employment drop in non-automating firms (Aghion et al., 2022). These trends underline the
need for proactive measures, such as reskilling programs, education reforms, and targeted
policies, to help workers transition into new roles and mitigate automation-driven inequalities.
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In the Table 5 (Appendix), key findings from grey literature on the impact of Al and automation
on employment are summarized. The table highlights the main conclusions, methodologies,
study populations, and measures of impact identified in non-academic sources, providing a
practical perspective on the challenges and opportunities associated with technological
advancements.

The comparison of findings from scientific studies and grey literature reveals a consistent
narrative regarding the impact of Al and automation on employment, albeit with differing
emphases. Both sources converge on the notion that Al and automation generate significant
opportunities for high-skilled workers while displacing low-skilled and routine-intensive roles.
Scientific studies provide a rigorous, quantitative analysis of these effects, grounded in
frameworks such as Skill-Biased Technological Change (SBTC) and task complementarity,
offering detailed insights into employment shifts and wage dynamics across sectors and
regions. In contrast, grey literature adopts a broader, policy-oriented perspective, emphasizing
societal challenges such as widening inequalities, regional disparities, and the critical need for
skill development and supportive government interventions. While scientific studies excel in
elucidating the mechanisms and heterogeneity of impacts across different countries, grey
literature highlights practical barriers to technology adoption, particularly in emerging
economies, and advocates for targeted measures to mitigate adverse outcomes. Together, these
perspectives present a complementary view, combining empirical rigor with actionable
recommendations to address the challenges and harness the opportunities of Al and automation.

The dominant indicators of impact are summarized in Table 7 (Appendix). Key indicators fall
into several broad categories: Employment Impact Indicators are related to changes in total
employment, sector-specific employment, and job creation or loss dominate the findings;
Unemployment and Job Risk Indicators address unemployment changes and job displacement
risks are prevalent; Wages and Income Inequality Indicators reveal the effect of automation on
income levels and disparities.; Sectoral and Demographic Shifts Indicators highlight
employment changes by sector and demographics; Technology Adoption and Investments
Indicators measure the adoption of robotics, [oT, and automation technologies.

The indicators most observed revolve around employment changes (job creation and loss),
sector-specific impacts, wage dynamics, job displacement risks, and technology adoption rates.
These findings emphasize the need for policies addressing workforce reskilling, inequality
mitigation, and sectoral support to adapt to the challenges posed by Al and automation.

A comparison is conducted between the key indicators identified in scientific studies and grey
literature regarding the impact of Al, automation, and Industry 4.0 on employment (Table 9,
Appendix). The comparison reveals overarching trends in the impact of automation, Al, and
Industry 4.0 on employment, productivity, and wages, albeit with differing emphases. Both
sources consistently highlight job polarization as a central theme, wherein automation fosters
employment growth in high-skilled, non-routine tasks while displacing routine and low-skilled
roles. Productivity gains are widely recognized, with automation driving sector-specific labour
demand in scientific studies and contributing to macroeconomic recovery in grey literature.
Wage impacts also exhibit a shared trend of increasing inequality, as automation amplifies
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wage divergence between high- and low-skilled workers. While scientific studies provide
granular, empirical analyses focusing on sectoral and regional heterogeneity, grey literature
adopts a broader perspective, emphasizing systemic risks such as regional disparities,
particularly in emerging economies, and barriers to technology adoption. Furthermore, grey
literature places greater emphasis on policy implications, advocating for education reform,
workforce reskilling, and state interventions to mitigate the socio-economic challenges posed
by automation. Together, these perspectives offer a comprehensive understanding, with
scientific studies elucidating detailed mechanisms and grey literature contextualizing broader
societal implications.

The studies considered a variety of additional indicators to evaluate the adoption and effects of
automation, Al, and Industry 4.0 technologies. These include measures of technology adoption
rates across sectors, such as the implementation of robotics, 10T, and digital twins. Indicators
also focused on robot penetration and density in industries, exploring how different countries
and sectors vary in automation adoption. Barriers to automation, such as costs and security
concerns, were assessed to understand challenges in implementation. Productivity metrics,
such as capital investment in ICT and its role in mitigating the effects of automation, were also
key factors. Additionally, market-level indicators, like changes in market share for automation-
adopting firms, and task-specific measures, including the risk of automation for various job
roles, were analysed. These indicators collectively provided insights into technological
adoption's broader economic and labour market impacts, helping to contextualize automation's
role in reshaping employment and industry landscapes.

The results reveal significant insights into the impact of automation and artificial intelligence
on labour markets in the EU. The research demonstrates that technological change is already
reshaping employment patterns, skill requirements, and workforce dynamics in complex and
often contradictory ways. The analysis also indicates a modest but positive net employment
effect across the EU, though this aggregate figure masks substantial sectoral and regional
variations. Manufacturing sectors have experienced the most pronounced job displacement,
with a substantial decline in employment, particularly affecting routine and manual positions.
Conversely, service and knowledge-intensive sectors show employment growth, especially in
roles requiring advanced digital skills and human-Al collaboration.

Regional disparities emerge as a critical factor, with technologically advanced economies
benefiting disproportionately from automation adoption. These regions show higher
productivity gains and more robust job creation in high-skilled sectors. In contrast, emerging
EU economies face challenges related to slower technological readiness and adoption rates,
potentially widening existing economic gaps between regions. Demographic impacts reveal
some patterns of advantage and disadvantage. Younger, high-skilled workers emerge as the
primary beneficiaries of Al integration, experiencing increased employment opportunities and
wage growth. Older workers and those in low-skilled positions face higher risks of
displacement and wage suppression. The research particularly highlights the vulnerable
position of migrant workers, who experience highly polarized outcomes based on skill levels.
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While demand for high-skilled migrants has increased by 15-20% in Al-intensive sectors,
opportunities for low-skilled migrants have declined by 5-10%.

The analysis identifies several critical barriers to effective Al adoption and workforce
adaptation. These include systemic biases in Al-driven hiring systems, persistent skill
mismatches between worker capabilities and job requirements, and limited access to reskilling
programs, particularly among vulnerable groups. Educational systems and training programs
often lag behind the rapid pace of technological change, creating challenges for workforce
adaptation. Wage and income dynamics show slightly increasing polarization, with high-skilled
workers in automation-intensive sectors experiencing wage growth while low-skilled workers
face stagnation or decline. This trend appears particularly pronounced in urban areas where Al
adoption is most concentrated, potentially exacerbating existing socioeconomic inequalities.

These findings resonate with established economic theories of technological change discussed
at the beginning of this article. The observed job polarization - characterized by displacement
in low-skill, routine-intensive occupations and growth in high-skill sectors - is consistent with
both the skill-biased technological change (SBTC) framework (Autor et al., 2003; Vivarelli,
2014) and the task-based complementarity model (Acemoglu & Restrepo, 2019). Similarly, the
unequal regional outcomes and limited net employment gains align with the technological
displacement hypothesis, particularly in areas lacking compensatory task creation mechanisms.
Interpreting these empirical patterns through theoretical lenses strengthens our understanding
of how automation and Al are reshaping labour markets in nuanced and context-dependent
ways.

5.2 Quantitative assessment of automation’s impact on labour market

To uncover the underlying structure driving the observed variations in automation’s impact on
labour market (employment, wages, and productivity) the application of Principal Component
Analysis (PCA) was conducted. The dataset, characterized by methodological inconsistencies,
regional disparities, and temporal differences, required an approach that could extract the most
informative dimensions while filtering out statistical noise.

To ensure comparability, the variable Value was standardized before conducting PCA. The
standardization procedure follows the transformation:

_ X

Xae, =

a

where Xst. is the value after standardization, X represents the original value, u is the mean, and
o is the standard deviation. This transformation ensures that the variable has a mean of zero
and a variance of one, preventing distortions in the principal component calculations due to
scale differences.

Mathematically, PCA identifies these principal components by solving the eigenvalue problem
for the covariance matrix X:
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where X is the covariance matrix of the dataset, v represents an eigenvector (principal
component), and A is the corresponding eigenvalue, which measures how much variance that
principal component captures. Each element i in this matrix represents the covariance
between variables i and j, measuring how changes in one variable relate to changes in another.
Eigenvector v represents a principal component, which defines a new axis in the transformed
feature space. These eigenvectors correspond to the directions along which the dataset exhibits

the most variance. Eigenvalue 4 is the variance explained by its corresponding principal
component. Each eigenvalue quantifies how much of the total variance in the dataset is
captured by its corresponding eigenvector (principal component).

A crucial aspect of the analysis was addressing heterogeneity in regional coverage (variable
Region, depicted as R), as studies either focused on a single country ("one country") or
provided a broader cross-country comparison within Europe ("Europe"). The regional variable
was thus included in the PCA to determine whether automation’s reported effects were
systematically different depending on whether the study analysed a single national economy
or a broader European sample. Another dimension of heterogeneity incorporated into the PCA
model was methodological variation (variable “Method”, depicted as M). The studies in the
dataset employed different research designs, broadly categorized into ‘econometric modelling’
and ‘statistical comparisons’. Given that methodological choices can systematically influence
the estimated magnitude of automation’s effects, this variable was essential for identifying
whether research techniques contribute to the observed variance in findings. Finally, the
publication year of each study was included in the PCA to account for temporal variation in
automation’s reported effects (variable Year, depicted as Y). Including publication year in the
PCA allowed for the detection of potential temporal shifts in how automation is perceived and
measured across different periods.

The results of PCA demonstrate that two principal components account for 65% of the total
variance, with the first component PC1 explaining 34.3% and the second PC2 capturing 30.7%.
These components encapsulate the primary dimensions along which the dataset varies,
reflecting differences in regional classifications, methodological approaches, and the year of
study publication. The PC1 and the PC2 account for most of the structure in the dataset. The
remaining components contribute progressively less variance and are often ignored because
they primarily capture noise.

PC1 represents structural economic variation (regional and temporal effects), so it depends
mainly on Region and Year. The regression equation for PCI is:

PCl=yp Rty Y+tysM+e

PC2 represents methodological effects, so it is largely driven by Method, with a weaker
influence from Region and Year. The regression equation for PC2 is:
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The regression model for PC1 explains the largest share of variance in the dataset, capturing
the structural economic differences in how automation affects labour markets across regions
and over time. The regression equation for PCI is as follows:

PCl= 125—-158R—034Y+031 M

In the model 84.6% of the variance in PC1 is explained by the combination of Region, Year,
and Method (R-squared equal to 0.846). The remaining 15.4% of the variance is unexplained,
suggesting that there are other factors outside the model that may influence the reported effects,
or that some noise is inherent in the data.

The coefficient for Region is -1.58 and is statistically significant at the 1% level (p<0.001).
This negative coefficient suggests that regional differences play a significant role in explaining
how automation’s effects are perceived. The coefficient for Year is -0.34, with a p-value <
0.001, which indicates a strong and statistically significant relationship. The negative sign
suggests that more recent studies report automation effects that differ from those observed in
earlier studies. The Method coefficient is 0.31, and it is statistically significant at the 5% level
(p = 0.021). This suggests that the choice of methodology used in the studies also affects the
reported automation impact, but to a lesser extent compared to Region and Year.

The regression model for PC2 captures the second-largest source of variance in the data and
primarily reflects the methodological differences in how automation’s effects are measured.
The regression equation for PC2 is:

PC2=-130—064R +001Y +1.85 M

The Method coefficient is 1.8472 and is highly statistically significant (p < 0.001). This large
positive coefficient indicates that methodology plays a dominant role in explaining the
variation in reported automation effects. Studies employing more sophisticated econometric
modelling tend to report larger automation impacts compared to studies using more basic
descriptive statistics or simpler methods. This reflects the influence of research design in
shaping how automation’s labour market effects are quantified. The coefficient for Region is
0.6315 and is statistically significant at the 1% level (p < 0.001). Unlike in PC1, the positive
coefficient for Region in PC2 indicates that regional factors still influence how automation is
studied, although the influence is less pronounced than in PC1. The coefficient for Year is
0.0133, with a p-value of 0.708, which is not statistically significant. This result suggests that
the temporal factor does not significantly affect methodological differences in how automation
is measured.

The findings emphasize that automation’s reported impact on labour market (employment,
wages, and productivity) is highly dependent on both regional contexts and the methodological
frameworks employed in different studies. The regional and temporal variability captured by
PC1 points to the need for context-specific policies, while the methodological variation
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captured by PC2 suggests that the choice of analytical techniques can influence policy
recommendations. Policymakers and researchers should account for these sources of variation
when interpreting empirical results. The presence of strong methodological effects suggests
that caution is required when comparing studies using different methodological approaches
econometric modelling vs. statistical comparisons.

The PCA analysis fits into this study as a tool for organizing divergent estimates and revealing
the main dimensions of heterogeneity in the reported effects. PC1 identifies a structural—
temporal gradient (differences across countries/Europe-wide samples and changes over time),
while PC2 captures a methodological axis (the dependence of effect magnitudes on
identification strategies). Thus, the PCA shows that the answer to the research question depends
on context (study location and period) and method (identification strength), which justifies
caution in aggregating results and supports the conclusion of a small but heterogeneous net
effect.

Future research could refine these estimates by incorporating sector-specific variations,
longitudinal labour market adjustments, and interactions between automation and human
capital investment. These considerations will be crucial for formulating policies that facilitate
a smooth transition toward a technology-driven economy while minimizing labour market
disruptions.

6. Discussion

There is a notable scarcity of scientific literature on the dimensions of Al and automation's
impact on employment, particularly in the EU. While grey literature provides valuable policy-
oriented insights, the volume of rigorous scientific research analysing these phenomena
remains relatively limited. Without a substantial body of empirical studies, the field risks an
over-reliance on fragmented findings, underscoring the urgent need for further scientific
exploration of this topic.

Despite the research on the impact of Al, automation, and Industry 4.0 on employment,
significant gaps remain in understanding their long-term effects across diverse economic and
social contexts. One critical gap lies in the inconsistent measurement of automation's impacts
across sectors and regions. While studies provide granular insights into sectoral shifts, such as
the displacement of low-skilled workers in manufacturing and the rise of high-skilled roles in
ICT, these findings are often limited to specific regions or industries. The broader implications
for non-industrial sectors, particularly in emerging economies with low technological
readiness, remain underexplored. Furthermore, variations in methodology, including
econometric modelling and survey-based approaches, often lead to discrepancies in reported
impacts, making it challenging to draw generalizable conclusions.

Another key gap concerns the limited integration of policy frameworks into empirical studies.
While grey literature emphasizes the need for education reform, reskilling programs, and state
interventions to mitigate job displacement and wage inequality, scientific studies rarely
evaluate the effectiveness of these strategies. This lack of focus on actionable policy outcomes
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hinders the development of comprehensive solutions for labour market adaptation.
Additionally, the role of institutional factors, such as labour market regulations, trade policies,
and educational systems, in mediating the effects of automation remains insufficiently
addressed in the literature.

This study contributes to the literature in three key ways: first, by providing a synthesis of
causal macroeconomic evidence on automation and AI’s employment eftects within the EU;
second, by introducing a replicable Al-assisted methodology for conducting meta-analyses in
underdeveloped fields; and third, by mapping clear research and policy gaps, including the
scarcity of empirical Al-specific labour market studies. This work aligns with an emphasis on
meta-research and methodological transparency (e.g., DeSimone et al., 2021) and complements
previous survey contributions that addressed emerging empirical domains using structured
synthesis. Importantly, our findings suggest that Al-assisted meta-analyses may help accelerate
knowledge generation in areas where formal meta-regression is currently impractical, offering
economists new tools to respond more quickly to fast-evolving research landscapes.

7. Limitations and Data Constraints

This meta-analysis is subject to several important limitations that must be acknowledged to
properly contextualize the findings and guide future research directions.

A fundamental limitation is the relative scarcity of empirical studies specifically examining
Al's impact on employment, as distinct from broader automation technologies. The majority of
the selected studies focus on automation, robotics, or digitalization more generally, with only
a subset directly addressing Al technologies. This reflects the nascent stage of Al deployment
and the time lag between technological adoption in the labour market and academic research
publication. Consequently, the findings may not fully capture the unique characteristics and
effects of Al systems compared to traditional automation. The analysed studies exhibit uneven
geographical coverage, with research from technologically advanced EU economies
overrepresented while studies from Eastern and Southern European countries are more limited.
This geographic bias may lead to an overestimation of positive employment effects, as the
included studies predominantly reflect experiences in regions with stronger institutional
support for technological transitions.

Significant methodological heterogeneity exists among the included studies, with different
research designs, varying definitions of automation and Al, and diverse outcome measures.
The Principal Component Analysis revealed that methodology explained a substantial portion
of the variance in findings, with studies employing econometric modelling techniques reporting
different magnitudes of impact compared to those using statistical comparisons. The studies
also employ various metrics for measuring both technology exposure and employment
outcomes, complicating the synthesis of findings. Moreover, many studies are constrained by
the availability of longitudinal data that would allow for comprehensive tracking of
employment effects over time. This limitation is particularly pronounced for Al-specific
studies, where data collection frameworks are still evolving. The available data often lacks
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sufficient granularity to examine specific occupational categories or sub-sectors, hindering the
development of targeted policy interventions.

Also, given the rapid pace of Al development, the findings may have limited temporal validity,
particularly for Al-specific effects. The technological landscape has evolved substantially even
during the period covered by this analysis, with the emergence of large language models and
generative Al systems that may have fundamentally different employment implications than
earlier automation technologies.

Due to limited and inconsistent reporting of technology exposure across the underlying studies,
there were insufficient data to identify the direct impact of automation and Al on labour-market
outcomes. Consequently, direct exposure measures (e.g., robot density, Al-exposure indices)
were not incorporated into the PCA; observed variation in reported employment effects was
instead mapped along the methodological (PC2) and regional-temporal (PC1) axes. Links to
displacement and task-based complementarity are therefore treated as theory-consistent
interpretations that require corroboration in supplementary analyses using external exposure
measures.

The analysed studies provide limited evidence on the impacts of automation and Al on
vulnerable worker populations, including migrants, older workers, and those in precarious
employment arrangements. This gap may result in an incomplete understanding of
distributional effects and policy blind spots regarding equity concerns in technological
transitions. While the Al-assisted screening and data extraction processes demonstrated high
overall reliability, performance varied across different tasks. The inter-rater reliability analysis
revealed particular challenges in extracting temporal information and some inconsistencies in
industry classification. The effectiveness of Al-assisted processes depends heavily on prompt
design, and despite extensive testing, the prompts may not have captured all relevant nuances,
particularly for edge cases or studies with ambiguous methodological approaches.

The modest positive net employment effect identified in this analysis should be interpreted
with caution, recognizing that it may reflect the experiences of more technologically advanced
EU regions and may not generalize to all contexts. The heterogeneity in findings across regions
and methodologies suggests that policy interventions should be tailored to specific contexts
rather than assuming universal applicability.

Despite these limitations, several factors support the robustness of the key findings. The
consistent pattern of skill-biased effects across different studies and methodologies provides
confidence that this represents a genuine phenomenon. The convergence of findings between
academic studies and grey literature on key trends such as job polarization and regional
disparities strengthens the credibility of these conclusions. The high inter-rater reliability
achieved in final inclusion decisions and the comprehensive search strategy support the
thoroughness of the evidence synthesis. These robustness factors provide confidence that the
main conclusions regarding skill-biased technological change, regional disparities, and the
need for proactive policy interventions are well-founded, while acknowledging the constraints
that limit the precision and generalizability of specific quantitative estimates.
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8. Conclusion

This meta-analysis addressed the research question: What is the impact of automation and Al
on employment within the EU, as evidenced by empirical research? by synthesizing findings
from filtered core 15 empirical macroeconomic studies highlighting causal effects and selected
grey literature. The evidence suggests that automation and Al have a generally modest net
positive effect on employment in the EU, though outcomes vary significantly across countries,
sectors, and social groups.

In the context of this meta-analysis, regions experiencing higher levels of job displacement
tend to be manufacturing-heavy and less technologically advanced areas within the EU, such
as parts of Eastern and Southern Europe, including Hungary, Slovakia, and certain regions in
Italy and Poland. These areas often exhibit lower automation readiness, slower digital
infrastructure development, and a greater reliance on routine, manual labour, making them
more vulnerable to the disruptive effects of automation. For example, studies referenced in the
analysis noted employment declines of nearly 10% in highly automated manufacturing regions,
particularly where compensatory job creation mechanisms (like innovation or retraining) are
weak.

In contrast, regions in more advanced EU economies, such as Germany, the Netherlands, and
parts of France, have seen more favourable employment outcomes. These regions benefit from
stronger institutional support for innovation, better access to digital infrastructure, and more
robust educational systems that supply high-skilled labour. They are also more likely to
implement Al and automation in a complementary way, leading to productivity gains and job
creation in knowledge-intensive sectors.

In terms of industries, manufacturing, transportation, and warehousing show the highest levels
of job displacement due to their routine-intensive nature and susceptibility to process
automation. Conversely, professional services, information and communication technologies
(ICT), healthcare, and education have experienced employment growth driven by Al and
digital augmentation. These sectors rely more heavily on non-routine cognitive tasks that are
less automatable and often enhanced by Al applications, creating demand for high-skilled
workers in roles such as data analysts, Al system designers, digital project managers, and health
informatics specialists.

Overall, the labour market impact of automation and Al is highly sector- and region-specific,
reinforcing the importance of a mix of tailored policy interventions that reflect local economic
structures, technological readiness, and workforce profiles.

The analysis highlights persistent regional disparities, with more advanced EU economies
benefiting more from technological adoption, while less developed regions face greater
challenges due to limited digital infrastructure and lower automation readiness.
Demographically, younger and more educated workers tend to gain from these changes, while
older and low-skilled populations, along with some migrant groups, encounter higher risks of
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job loss or reduced job quality. Importantly, the review identifies a significant research gap in
studies that assess the causal impacts of Al (as distinct from general automation), which limits
the ability to develop tailored, evidence-based labour market policies.

From a policy perspective, the findings underscore the need for targeted reskilling and
upskilling programmes that respond to evolving skill demands, as well as education reforms
that promote early digital literacy and adaptability. Regional support measures are also vital to
narrow the divide in technological adoption and ensure more balanced outcomes across the
EU. Finally, the study calls for more robust, macro-level empirical research on AI’s causal
specific effects on employment, which is currently underdeveloped in the literature. Without
such insights, there is a risk that automation and Al may reinforce existing inequalities rather
than serve as engines of inclusive growth.

To sum up, the evidence synthesized in this study offers empirical support for both
displacement and complementarity dynamics, depending on sectoral, regional, and skill-
specific contexts. The results show the relevance of existing theoretical frameworks,
particularly skill-biased technological change (SBTC) and task-based models of technological
change as tools for interpreting employment impacts in the Al and automation era (Autor et al.,
2003; Acemoglu & Restrepo, 2019; Vivarelli, 2014). SBTC theory explains the widening
employment and wage gaps between high- and low-skilled workers as a consequence of
technology favouring cognitive, non-routine tasks. In parallel, the task-based approach
highlights how automation may simultaneously displace workers in routine roles while creating
new tasks that complement human skills. By linking fragmented empirical outcomes to these
broader theories, the study provides a conceptual basis for understanding labour market
transitions and guiding future empirical and policy efforts.

As Al technologies and labour market dynamics continue to evolve, there is a clear need for
ongoing meta-analytical monitoring. A structured follow-up synthesis within the next 3-5 years
will be essential to assess how the evidence base expands, whether causal research on Al
matures, and how labour outcomes shift across EU regions. This study also illustrates the value
of early-stage, structured reviews in economics especially when combined with Al-assisted
methods that enhance transparency, reproducibility, and efficiency.

Generative AI Statement

During the preparation of this work the authors used ChatGPT (models 40, o1), Claude (models
Sonnet 3.5, Haiku 3.5), Gemini (models Gemini Flash 2.0, Gemini 1.5 Pro) to improve
readability and language. After using these tools, authors reviewed and edited the content as
needed and take full responsibility for the content of the published article. Generative Al
models are also a major element of the method proposed in the paper, as discussed in the
Methods section.
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Appendix

Table 3. Empirical studies on the impact of automation and Al on employment. Authors’ own elaboration.

A’Z}i’;ﬁiﬁ;ﬁ;m Research problem Analysed impact
Kordos, M., | Consequences of industry 4.0 in the tourism | - the impact of robotics, automation and
Berkovic, V. | sector digitalization within Slovak tourism
(2021) business
Casas, P, Roman, | Whether the automation degree or the - automation -> early retirement
C. (2023) | automation risk are triggering early
retirement transitions
Deng, L., Miiller, | Impact of robot adoption on employment - robot adoption -> total employment in
S., Pliimpe, V., | composition a company
Stegmainer, J. - robot adoption -> hiring
(2024) - robot adoption -> employment in

division for skill level
- robot adoption -> employment in
division by age

Albinowski, M.,
Lewandowski, P.
(2024)

Age- and gender-specific labour market
effects of two key modern technologies,
Information and Communication
Technologies (ICT) and robots

- technology adoption -> labour market
outcomes

Cirillo, V., Mina,

Effects of new digital technologies on labour

- digital technologies -> hiring rate

A., Ricci, A. | flows in the Italian economy - digital technologies -> separation rate
(2024)

Tiwari, A.K. | Implications of imports-led and FDI - automation -> labour productivity
(2022) | facilitated automation for productivity and - investment in automation -> labour

factor shares of tasks and value-added

productivity

Chen, C.C., Frey,

Impact of robots on local labour markets

- industry exposure to robots -> industry

C.B. (2024) employment change
Dauth, W., | Adjustment of local labour markets to - robot exposure -> employment (total)
Findeisen, S., | industrial robots
Suedekum, J., - robot exposure -> average wage
Woessner, N.
(2021)
Cords, D., | The impact of automation capital on - automation -> employment (low
Prettner, K. | employment, wages, and labour market skilled)
(2022) | dynamics - automation -> employment (high
skilled)
Aghion, P, | Firm- level employment effects of - investment in manufacturing capital ->
Antonin, C., | automation and robotization labour demand
Bunel, S., Jaravel,
X (2023)
Cserhati, 1., | Impact assessment of Industry 4.0 on the None impact, implementation of

Pirisi, K. (2020)

expected structure of employment, wages
and inequalities

Industry 4.0 vs. shift in employment and
wages

Valaskova, K.,

Employment and job dynamics within large

None impact, implementation of

Nagy, M., Grecu, | Slovak enterprises resulting from the Industry 4.0 vs. employment
G. (2024) (2024) | implementation of Industry 4.0 elements
Wegrzyn, G. | Changes taking place in the employment None impact, implementation of
(2020) | structure within Manufacturing which Industry 4.0 vs. employment distribution
accompany the implementation of the
industry 4.0 concept
Aghion, P, | Effects of automation on employment - exposure to robots -> employment
Antonin, C.,
Bunel, S., Jaravel,
X (2022)
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Cserhati, I,
Takacs, T. (2019)

Potential job losses caused by automation in
Hungary and its impact on poverty gap

- automation -> job losses

Table 4. Overview of Empirical Studies — Impact of AI and Automation on Employment. Authors’ own

elaboration.
Article/Authors . Study Measures of
of the study Key findings Methods populations impact
Kordos, M., | Automation in Slovak Structured Hotel industry | Introduction of
Berkovic, V. | tourism may lead to job interviews and employees in | robots; impact on
(2021) | transformation rather than comparison Slovakia job roles and
loss employment
opportunities
Casas, P, | Automation impacts early Data from the Workers aged | Early retirement
Roman, C. | retirement decisions, SHARE survey; 50+, all over probability;
(2023) | education influences econometric Europe, with automation degree;
autonomy in retirement analysis, logit various job automation risk
timing estimations status and
education
levels
Deng, L., | Robot adoption in German An event-study 116 robot- Total employment
Miiller; S., | manufacturing plants has led | framework adopting levels;
Pliimpe, V., | to increasing of employment | capturing plants and Employment
Stegmainer, J. employment 1,962 non- shares across
(2024) trends before and | adopting occupational
after robot plants categories; Worker

adoption; data

churning

relationships

broad range of

transformations to (hiring/separations)
handle zero- and task
dependent replaceability
variables and (complementarity
ensure ness or substitutability
of workers to
robots)
Albinowski, M., | Adoption of ICT and robots Econometric 21.2 million Changes in
Lewandowski, | impacted demographic modelling with worker-level employment
P (2024) | labour outcomes (ICT had a | instrumental observations; | shares, wage
larger influence); positive variable (IV) 14 European shares, and average
effects on employment shares | approach; countries; 936 | wages; Impacts
for young and prime-aged regression country-sector | estimated using
women; negative effects for | analyses observations counterfactual
older women controlled for for each analyses
education, sector, | demographic | comparing no-tech
and globalization | group, with scenarios; ICT
groups adoption
defined by age | contributed
(20-29, 30— significantly to
49, 50-59, shifts in age- and
60+) and gender-specific
gender labour outcomes
Cirillo, V, | Digital technologies A Difference-in- 11,251 Hiring rates,
Mina, A., Ricci, | positively impact firm hiring | Difference (DiD) | observations separation rates;
A. (2024) | rates, particularly for young approach from the RIL- | share of new hires
workers; adoption reduces combined with COB-ASIA by age and
separation rates and supports | propensity score dataset, education; impact
longer, stable work matching (PSM) representing a | on trained

workforce and cost
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Italian firms

of training per

across sectors | employee
Tiwari, A.K. | Automation in Estonian Micro Estonian firms | Total Factor
(2022) | firms increased productivity | econometric from 1995 to Productivity (TFP),
and labour share of value- analysis using 2018 Labour Share of
added among adopters; firm-level census Value-Added,
multinational companies data, employment
fostered job creation and decomposition changes, firm-level
knowledge spillovers through | techniques, and productivity, and
FDI econometric effects of FDI and
modelling imports on
automation
outcomes
Chen, C.C., | Robots reduced Comparative Eight Employment-to-
Frey, C.B. | manufacturing jobs across analysis using European population ratio,
(2024) | Europe, with significant robot penetration | countries: effects of robot
employment declines in Italy, | metrics (APR) and | Denmark, adoption and
Norway, and the UK; robots Chinese import Finland, Chinese imports,
increased non-manufacturing | exposure, based Germany, demographic and
employment in Spain but on OLS regression | Italy, Norway, | sectoral
reduced it in Germany, Italy, | analysis Spain, employment
and Norway; young and Sweden, and changes
unskilled workers were most the United
adversely affected Kingdom
Dauth, W., | Robots caused displacement | analysis of German Employment
Findeisen, S., | in manufacturing jobs but administrative labour market | changes (%), wage
Suedekum, J., | were offset by job creation in | German labour regions from growth (log
Woessner, N. | the service sector; young market data 1994 to 2014 | differences), task
(2021) | workers faced more combined with share adjustments
significant displacement; job | robot stock data (routine, manual,
quality improved with higher | from IFR. using a abstract tasks), and
wages in new roles within shift-share productivity
firms. approach and metrics
instrumental
variable (IV)
strategy
Cords, D., | Automation leads to higher Search and German Employment
Prettner, K. | unemployment rates for low- | matching labour labour market | changes (%), wage
(2022) | skilled workers but decreases | market model with | data differences (low-
unemployment rates for automation capital vs high-skilled
high-skilled workers; as an additional workers), changes
automation increases wages production factor in labour market
for high-skilled workers tightness (vacancy-
while reducing wages for to-unemployment
low-skilled workers; overall ratios)
employment increases due to
job creation in high-skilled
sectors
Aghion, P, | Investments in modern Event study French Semielasticitiesfor
Antonin, C., | manufacturing capital, methodology manufacturing | manufacturing
Bunel, S., | including automation using microdata sector and employment, for
Jaravel, X. | technologies, increase local from French commuting total employment,
(2023) | labour market employment; manufacturing zones (CZs) for wages, for
manufacturing employment firms and manufacturing
sees the highest growth, with | commuting zones sales
spillover effects to total (CZ) from 2003—
employment; increased 2016

wages and sales indicate a
productivity-driven labour
demand rise
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Cserhati, I,
Pirisi, K.
(2020)

Automation and Industry 4.0
leads to significant sectoral
shifts in employment and
wages; skill mismatches
could worsen inequalities
and labour shortages

Static
microsimulation
model based on
EU-SILC
Hungary 2018
dataset and
projections from

Hungarian
labour market
(2018-2030)

Income inequality
measures (Gini,
S80/S20 ratio),
sectoral wage
growth,
employment
growth, regional

CEDEFOP and wage distributions,
HCSO and educational
attainment changes
Valaskova, K., | Industry 4.0 technologies like | Quantitative Slovak Employment
Nagy, M., | digital twins and Al systems | analysis Republic changes, wage
Grecu, G. | are adopted gradually in combining manufacturing | growth, digital
(2024) | Slovakia, primarily in national statistical | sector (2016— | readiness, Industry
manufacturing; major indicators and a 2022), 413 4.0 implementation
obstacles include lack of survey of 500 firms rates, and
digital skills, state support, large responded to education system
and education reform; manufacturing the survey adaptability
increased demand for enterprises
technical workers with
higher education was
identified
Wegrzyn, G. | Industry 4.0 technologies Descriptive and Manufacturing | Robot density,
(2020) | lead to significant structural statistical analysis | sectors in employment
changes in manufacturing of Eurostat data seven EU changes (%),
employment, especially in (2011-2018); countries: sector-specific
sectors with high structural Czechia, employment
robotization; employment for | employment Germany, impacts, and
young, low-skilled workers changes and robot | Poland, demographic shifts
decreases in high-tech areas; | density measures Slovenia, in manufacturing
use of robots improves Slovakia, labour
productivity but impacts job Romania, and
distribution Hungary
Aghion, P, | Automation has mixed Literature review | French Employment
Antonin, C., | effects: automating firms combined with manufacturing | elasticities to
Bunel, S., | experience productivity gains | empirical analysis, | and labour automation, robot
Jaravel, X. | and increased employment, including firm- markets from | density changes,
(2022) | but non-automating firms level event studies | 1994 to 2015; | wage inequality
suffer displacement effects; and shift-share cross-country | metrics
automation leads to job research design comparisons
polarization, increasing high- with Europe
and low-skilled jobs while and the US
reducing routine jobs;
positive firm-level effects on
employment are offset by
competitive pressures at the
industry level
Cserhati, I, | Automation in Hungary Static Hungarian Job losses by
Takdacs, T. | could result in job losses for | microsimulation labour force, occupation (ISCO
(2019) | 334,613 workers, primarily using EU-SILC 3.4 million codes), poverty
in low-skilled, manual labour | data, with risk records rate changes,
occupations; the poverty gap | assessments based | analysed, poverty gap
may increase significantly on ISCO using national | increase (from
without proper government occupation codes | income and 62% to 83% in
interventions; public work and automation occupational worst-case
programs can partially risk models datasets scenarios)

mitigate poverty increases
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Table 5. Overview of grey literature — Impact of Al and Automation on Employment. Authors’ own

elaboration.
Authors of the Key findings Methods Study populations Measures of
study impact
Hawksworth, J., | Automation affects | Based on OECD's Workers analysed Potential
Berriman, R., | job risks by gender, | PIAAC dataset by gender, age, and | automation rates by
Cameron, E. | education, and covering 29 education across 29 | job categories,
(2018) | occupation. Male countries. Uses a countries, gender, and
jobs in manual three-wave representing over education levels;
labour are more at framework: 200,000 workers; automation is
risk, while female Algorithm wave employment assessed across
jobs in education (2020s), sectors include three waves with
and healthcare are | Augmentation manufacturing, distinct task
less automatable; wave (2030s), and | transport, automation rates;
industries vary in Autonomy wave; education, and impact on
their automation comparative health; analysed employment
risks: transport and | analysis of tasks: structure, wage
manufacturing face | countries, computational, trends, and task
the highest industries, and manual, social, and | composition.
potential occupations managerial across
automation rates by jobs.
2030s; automation
risk is highest for
low-education
workers; highly
educated workers
face lower risks
due to cognitive
and managerial
tasks
Carbonero, F, | Robots have A panel dataset 41 countries and 15 | Employment
Ernst, E., Weber, E. | reduced global combining sectors, focusing reduction rate: -
(2018) | employment by International on manufacturing 1.3% globally, -
1.3% (2005-2014). | Federation of industries with 14% for emerging
Emerging Robotics (IFR) and | high labour economies;
economies are World Input- intensity; focus on | offshoring decline:
more affected (- Output Database industries like -0.7% in developed

14%) than (WIOD); OLS and | automotive, countries; impact
developed IV regression electronics, and on labour-intensive
economies (- approaches to manufacturing, industries: -4.3%
0.54%); Developed | address where robots are employment in
countries benefit endogeneity in predominantly emerging
from reduced robot deployment; | installed; economies.
offshoring due to technological timeframe: 2005—
robotization, progress indices as | 2014; sectors
harming instruments to classified by labour
employment in measure the task and capital
emerging capability of intensity
economies; robots robots.
substitute workers
in repetitive tasks;
labour-intensive
sectors experience
higher impacts.
Albanesi, S., Dias | Al-enabled Regression analysis | 16 European Change in

da Silva, A.,
Jimeno, J.F,, Lamo,
A., Wabitsch, A.
(2023)

automation is
associated with
employment
increases in

using employment
and wage data from
EU Labour Force
Survey (EU-LFS);

countries (2011-
2019) with sector-
occupation
observations at 3-

employment shares
and relative wages
based on exposure
to Al and software
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Europe, especially
for high-skilled and
young worker; no
significant
relationship
between Al
exposure and
wages; software
automation has
varied country-
specific impacts;
heterogeneity in
impact across
countries is driven
by technology
diffusion,
education levels,
and regulations

two measures of Al
exposure: Webb
(task overlap) and
Felten et al. (ability
requirements); uses
country-level
controls like DESI,
PISA scores, and
OECD Product
Market Regulation
indices.

digit ISCO levels;
skills grouped into
low, medium, and
high terciles; age
categorized as
younger, core, and
older workers;
occupational
exposure to
Al/software and
structural factors
like education and
competition

technologies;
employment
impact quantified
using Webb's Al
indicator (+2.6%
employment for
median Al-exposed
sectors); wage
impact is neutral or
negative; no
evidence
supporting
software replacing
routine jobs at the
aggregate leave

Table 6. Comparison of “Key findings” Scientific studies vs. grey literature. Authors’ own elaboration.

Aspect

Scientific Studies

Grey Literature

Overall impact of automation

Automation impacts jobs through
task replacement and creation,
with varied effects across sectors,
regions, and skill groups.
Automation is generally
associated with employment
increases in high-skilled sectors.

Emphasis on risks of automation
to manual and routine jobs;
highlights significant sectoral and
regional differences but focuses
more on risks rather than
opportunities.

Wage trends

Wage impacts are mixed:
automation increases wages in
high-skilled sectors but reduces
wages for low-skilled workers.

Similar findings on wage
divergence, with higher inequality
risks highlighted in grey literature.
Fewer details on neutral or
positive effects in high-skilled
sectors.

Focus on skills

Al and automation favour high-
skilled, younger workers,
supporting Skill-Biased
Technological Change (SBTC)
theory. Medium- and low-skilled
routine jobs are most vulnerable.

Highlights the risk to low-
education and manual workers but
also notes opportunities for high-
skilled roles. Suggests automation
amplifies inequalities without
proper interventions.

Drivers of heterogeneity

Education levels, labour market
policies (e.g., employment
protections), and adoption rates
drive differences in automation
effects across countries and
demographics.

Similar drivers identified, but
greater emphasis on barriers to
technology adoption such as lack
of digital skills and government
support, especially in less
developed regions.

Regional differences

Effects vary across regions due to
differences in technology
diffusion, education systems, and
regulations. Emerging economies
are more negatively impacted than
developed countries.

Regional disparities highlighted,
especially for manufacturing in
Europe and emerging economies.
Developed countries benefit from
offshoring reduction; emerging
economies face job losses.

Sectoral impacts

Sectors like manufacturing and
transportation show higher
automation risks; service sector
jobs often experience gains due to
complementary technologies.

Manufacturing and transport
dominate automation risks;
service sector benefits less
prominently discussed. Focuses
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on manual labour displacement
and regional job quality declines.

Table 7. Overview of empirical studies — Indicators of Automation, AL, and Industry 4.0 Adoption’s
impact on various aspects of employment. Authors’ own elaboration.

Article/Authors
Indicator type Description Value of the study
Employment impact | Percentage increase in sector 1,9% increase (2014-2019) Kordos, M.,
jobs due to automation Berkovic, V.
(2021)
Total employment increase 5% Deng, L., Miiller,
around robot adoption S., Pliimpe, V.,
Stegmainer, J.
(2024)
Share of total employment by | Declined in manufacturing Tiwari, A.K.
automation-adopting firms since 2005, stagnant in other | (2022)

sectors

Change in employment-to-

-0.52% (ltaly), -2.1%

Chen, C.C., Frey,

population ratio in response to | (Norway), -0.47% (UK); No | C.B. (2024)
robot adoption significant effect in other
countries
Overall change in total No significant change in total | Dauth, W.,
employment due to employment; offset between | Findeisen, S.,
automation in Germany sectors Suedekum, J.,
Woessner, N.
(2021)
Overall change in total Increase in high-skilled Cords, D.,
employment due to employment offsets low- Prettner, K.
automation in Germany skilled job losses (2022)
Change in unemployment Increased Cords, D.,
rates for low-skilled workers Prettner, K.
(2022)
Change in unemployment Decreased Cords, D.,
rates for high-skilled workers Prettner, K.
(2022)
Overall effect of investments Positive; semi elasticity of Aghion, P.,
in modern manufacturing +0.04 Antonin, C.,
capital on local labour market Bunel, S.,
employment Jaravel, X.
(2023)
Changes in employment levels | Varies by sector: -45.3% in Cserhati, I.,

across sectors due to
automation and Industry 4.0.

agriculture, +10.4% in
utilities

Pirisi, K. (2020)

Increase in hiring rate in the 24% Deng, L., Miiller,

robot adoption year S., Plimpe, V.,
Stegmainer, J.
(2024)

Changes in employment levels
across Slovak manufacturing

No significant overall
change: 11.22% of firms saw

Valaskova, K.,
Nagy, M., Grecu,

sectors due to Industry 4.0 workforce growth; 12.09% G. (2024)
adoption reduction in less skilled
technical roles
Change in manufacturing Declined by approximately Dauth, W,
sector employment 9.7% Findeisen, S.,
Suedekum, J.,

36



Woessner, N.

(2021)
Growth in robot-intensive Slovakia (Automotive): +4.4 | Wegrzyn, G.
manufacturing industries pp; Germany (Machinery): (2020)
+3 pp
Increase in employment due to | +0.2% immediate increase in | Aghion, P.,
automation at automating employment; +0.4% after 10 | Antonin, C.,
firms years Bunel, S.,
Jaravel, X.
(2022)
Employment and output 10% decrease in employment | Aghion, P.,
effects on firms not adopting for non-automating firms due | Antonin, C.,
automation to competition from Bunel, S.,
automating firms Jaravel, X.
(2022)
Employment impact on Increased by approximately Dauth, W.,
service sectors 4.7% Findeisen, S.,
Suedekum, J.,
Woessner, N.
(2021)
Number of workers at high 334,613 workers in Hungary, | Cserhati, L.,

risk of losing their jobs due to
automation, primarily in low-
skilled occupations

representing approximately
9.8% of the workforce

Takacs, T. (2019)

Automation risk of job loss
due to automation varies by
occupation, with higher risks
for manual and low-skill roles

Highest risk: 18% for
assemblers and skilled
trades; Lowest risk: 2% for
managers

Cserhati, 1.,
Takacs, T. (2019)

Occupations with highest risk
of job loss most affected by
automation risks

Assemblers (ISCO 73): 18%
risk; Plant Operators (ISCO
81): 17% risk

Cserhati, 1.,
Takacs, T. (2019)

Economic
contribution/ Wage
changes/ Wage and

income inequality

Change in average wages due | 33% increase in Dauth, W,
to automation manufacturing; 29% in Findeisen, S.,
services Suedekum, J.,
Woessner, N.
(2021)
Effect of automation on wages | Wages decrease for low- Cords, D.,
of low-skilled and high-skilled | skilled, increase for high- Prettner, K.
workers skilled workers (2022)
Impact on local wages Positive; semi elasticity of Aghion, P.,
+0.01 Antonin, C.,
Bunel, S.,
Jaravel, X.
(2023)

Growth in nominal wages for
industrial workers

7.4% increase in 2022
compared to 2021

Valaskova, K.,
Nagy, M., Grecu,
G. (2024)

Real wage growth across
sectors based on projected
automation adoption and
labour demand

1.5-2% annually, highest in
ICT and manufacturing.

Cserhati, 1.,
Pirisi, K. (2020)

Gap between low-skilled and Increased due to divergent Cords, D.,
high-skilled wages due to wage trends Prettner, K.
automation (2022)
Impact of automation and Gini increases from 0.333 to | Cserhati, 1.,

Industry 4.0 on wage
distribution and income
inequality

0.371

Pirisi, K. (2020)
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Effect of automation on wage | No significant effect found; Aghion, P.,

disparities between low- and ratio of low- to high-skilled Antonin, C.,

high-skilled workers wages remains stable Bunel, S.,
Jaravel, X.
(2022)

Real wage changes in Manufacturing: +122%; ICT: | Cserhati, I.,

Total Factor
Productivity
(TFP)/Labour
Productivity

automation-intensive sectors. | +153% Pirisi, K. (2020)
Productivity growth of Higher for adopters; faster Tiwari, A.K.
automation-adopting firms growth observed (2022)
compared to non-adopters
Effect of modern Significant, drives labour Aghion, P.,
manufacturing capital demand growth Antonin, C.,
investments on productivity Bunel, S.,
Jaravel, X.
(2023)

Year-on-year changes in
labour productivity per person

Peak of +12.1% in 2021
(economic recovery and

Valaskova, K.,
Nagy, M., Grecu,

employed increased adoption of G. (2024)
automation and digital
technologies), low of -7.2%
in 2020 (pandemic impact)
Automation s/robotics’ | Reduction in labour task Declines over time, Tiwari, A.K.
impact on labour | content among automation especially in firms (2022)
tasks/job roles | adopters automating frequently
Change in task composition Routine tasks declined by Dauth, W.,
(routine to abstract) due to 9%, abstract tasks increased | Findeisen, S.,
automation by 8% Suedekum, J.,
Woessner, N.
(2021)

Workforce shifts due to AI and
automation adoption

28.81% increase in skilled
technical roles; 12.09%

Valaskova, K.,
Nagy, M., Grecu,

decrease in low-skilled G. (2024)
technical roles
Extent to which automation Not explicitly quantified but | Aghion, P.,
replaces manual or repetitive observed Antonin, C.,
tasks Bunel, S.,
Jaravel, X.
(2023)
Share of replaceable tasks Young (19.11%), Mid-age Deng, L., Miiller,
across age groups (19.05%), Old (18.72%) S., Pliimpe, V.,
Stegmainer, J.
(2024)
Shifts in job structure due to Routine jobs decrease Aghion, P,
automation: routine jobs significantly; high- and low- | Antonin, C.,
decrease, while high- and low- | skilled job shares increase in | Bunel, S.,
skilled jobs increase automating firms Jaravel, X.
(2022)
Degree to which robots High; robots act as a perfect | Cords, D.,
replace low-skilled tasks substitute for low-skilled Prettner, K.
labour (2022)
General employment | Net change in total Positive overall after Cords, D.,
impact/ Labour | employment due to accounting for job creation Prettner, K.
demand changes after | automation (2022)
automation/robot | Overall impact of automation Driven by productivity; Aghion, P.,
adoption | on labour demand positive net effect Antonin, C.,
Bunel, S.,
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Jaravel, X.
(2023)

Increase in employment share
for young women (20-29) due
to ICT (Information and
Communication Technology)
adoption

+0.13 percentage points

Albinowski, M.,
Lewandowski, P.
(2024)

Hiring shows a pronounced 24% Deng, L., Miiller,

spike in the robot adoption S., Pliimpe, V.,

year Stegmainer, J.
(2024)

Total employment increases in | 5% Deng, L., Miiller,

the robot adoption year by S., Pliimpe, V.,

about 5 percent compared to Stegmainer, J.

the control group (2024)

Increase in hiring rate due to +2 percentage points Cirillo, V., Mina,

technology adoption A., Ricci, A.
(2024)

Impact of robots on non- Increased in Spain; Chen, C.C., Frey,

manufacturing employment Decreased in Germany, Italy, | C.B. (2024)

Norway

Impact of robots on

Decreased across all

Chen, C.C., Frey,

manufacturing employment countries, statistically C.B. (2024)
significant in Italy, Spain,
UK
Change in employment Positive; semi elasticity of Aghion, P,
specifically in manufacturing +0.05 Antonin, C.,
sectors due to investments in Bunel, S.,
modern manufacturing capital Jaravel, X.
(2023)
Employment shifts due to Manufacturing: +0.9%; ICT: | Cserhati, L.,

automation in specific sectors

+0.5%

Pirisi, K. (2020)

Training/education
path referred to
adoption of new

technology

Increase in share of trained

+3.3 percentage points

Cirillo, V., Mina,

employees due to technology A., Ricci, A.

adoption (2024)

Introduction of new 3,3% Deng, L., Miiller,

technologies increases the S., Plimpe, V.,

percentage of trained workers Stegmainer, J.
(2024)

Cost of training rises per 30% Deng, L., Miiller,

employee compared to non- S., Pliimpe, V.,

adopting firms Stegmainer, J.
(2024)

Education and career path Shift towards higher Dauth, W,

adjustments by young workers | education Findeisen, S.,

in response to automation (college/university) Suedekum, J.,
Woessner, N.
(2021)

Impact of automation and Slight increase in tertiary Cserhati, I.,

Industry 4.0 on distribution of
employed persons by
education level

education from 24.5% to
26.1%

Pirisi, K. (2020)

Perception of workforce
readiness for Industry 4.0

38.29% rate graduates as
prepared; 34.28% view them

Valaskova, K.,
Nagy, M., Grecu,

as unprepared G. (2024)
Impact of robots on skilled Negative for unskilled Chen, C.C., Frey,
and unskilled workers workers, especially in C.B. (2024)
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Germany and UK; Limited
effect on skilled workers

Probability of early retirement | 5,35% Casas, P.,

(average) Roman, C.
(2023)

Effect of automation on job Job stability increased for Dauth, W,

tenure incumbent workers Findeisen, S.,
Suedekum, J.,
Woessner, N.
(2021)

Impact of automation | Effect of robots on age- Young workers most affected | Chen, C.C., Frey,
on distribution of | specific employment negatively; Older workers C.B. (2024)
demographics (age, (55+) benefit in Finland,
gender) Germany

Impact of age on early 34,94% Casas, P.,

retirement transition Roman, C.

probability with focus on (2023)

automation degree

Impact of automation on Younger workers Dauth, W.,

different worker demographics | disproportionately affected; Findeisen, S.,

older workers less impacted | Suedekum, J.,

Woessner, N.
(2021)

Effect of robots on male and Negative impact on male Chen, C.C., Frey,

female employment employment; Mixed results C.B. (2024)

for female employment

Impact of gender (female) on 39,03% Casas, P.,

early retirement transition Roman, C.

probability with focus on (2023)

automation degree

Impact of having a partner on | 9,54% Casas, P.,

early retirement decision with Roman, C.

focus on automation degree (2023)

Decrease in employment share
for older women (60+) due to

-0.17 percentage points

Albinowski, M.,
Lewandowski, P.

robot adoption (2024)

Net effect of robots on job 3.42 high-skilled jobs created | Cords, D.,

creation in high-skilled sectors | per additional robot Prettner, K.
(2022)

Net effect of robots on job 1.66 low-skilled jobs lost per | Cords, D.,

destruction in low-skilled additional robot Prettner, K.

sectors (2022)

Relationship between robot

Italy: -0.52%; Norway: -

Chen, C.C., Frey,

exposure and employment-to- | 2.1%; UK: -0.47%,; Others: C.B. (2024)
population ratio by country No significant impact

Reduction in demand for Germany: Decline in young | Wegrzyn, G.
routine tasks and impact on workforce aged 15-24 by - (2020)

young workers

7% (men) and -6.6%
(women)
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Table 8. Overview of grey literature — Indicators of Automation, Al, and Industry 4.0 Adoption’s impact
on various aspects of employment. Authors’ own elaboration.

income inequality

Indicator type Description Value Authors of the study
Employment impact Reduction in global -1.3% (2005-2014) Carbonero, F., Ernst, E.,
employment due to Weber, E. (2018)
robot adoption
Employment decline in -0.54% (2005-2014) Carbonero, F., Emst, E.,
developed economies Weber, E. (2018)
Employment decline in | -14% (2005-2014) Carbonero, F., Emst, E.,
emerging economies Weber, E. (2018)
Employment loss in -4.3% Carbonero, F., Emst, E.,
labour-intensive sectors Weber, E. (2018)
in emerging economies
Reduction in -5% Carbonero, F., Emst, E.,
employment in Weber, E. (2018)
emerging economies
due to reduced
offshoring in developed
economies
Share of manufacturing | -0.046% Carbonero, F., Emnst, E.,
jobs lost globally due to Weber, E. (2018)
robots
Share of jobs at risk of 22% (Finland, Korea) Hawksworth, J., Berriman,
automation in the 2030s | to 44% (Slovakia) R., Cameron, E. (2018)
Increase in employment | +2.6% (Webb Albanesi, S., Dias da Silva,
share for sectors with indicator) A., Jimeno, J.F., Lamo, A.,
median Al exposure Wabitsch, A. (2023)
Total Factor Increase in productivity | +0.37% annually Carbonero, F., Ernst, E.,
Productivity due to robot adoption (2005-2014) Weber, E. (2018)
(TFP)/Labour
Productivity Contribution of robots 10% of overall Carbonero, F., Emst, E.,
to labour productivity productivity growth Weber, E. (2018)
growth (2005-2014)
Economic Wage impact in +1.5% (average Carbonero, F., Emst, E.,
contribution/ Wage developed economies sectoral increase) Weber, E. (2018)
changes/ Wage and

Increase in wage
inequality due to skill-
biased automation

+5.5% (Gini
coefficient in some
regions)

Carbonero, F., Emst, E.,
Weber, E. (2018)

Impact of Al on relative
wages for high-skilled
workers

+0.034 (Webb Al
measure, significant
for high-skilled
workers only)

Albanesi, S., Dias da Silva,
A., Jimeno, J.F., Lamo, A.,
Wabitsch, A. (2023)

Automation s/robotics’
impact on labour
tasks/job roles

Automation of simple
computational tasks

3%-5% of jobs affected
across countries

Hawksworth, J., Berriman,
R., Cameron, E. (2018)

Automation of dynamic
tasks (e.g., clerical

20%-26% of jobs
affected across

Hawksworth, J., Berriman,
R., Cameron, E. (2018)

work) countries
Routine/manual tasks Up to 64% for Hawksworth, J., Berriman,
are highly automatable | operators/assemblers R., Cameron, E. (2018)

Training/education
path referred to
adoption of new
technology

Low-education workers
face higher automation
risk

50%+ (low education)

Hawksworth, J., Berriman,
R., Cameron, E. (2018)

Increase in Al
employment share for
high-skilled occupations

+6.6% (Felten
indicator)

Albanesi, S., Dias da Silva,
A., Jimeno, J.F., Lamo, A.,
Wabitsch, A. (2023)
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Impact of automation
on distribution of

demographics (age, sectors

Male workers at higher
risk due to manual-task

34% (males) vs. 26%
(females)

Hawksworth, J., Berriman,
R., Cameron, E. (2018)

gender)

Positive Al impact for

+3.2% (Webb

Albanesi, S., Dias da Silva,

workers

shares for occupations
employing younger

occupations employing indicator) A., Jimeno, J.F., Lamo, A.,
younger workers Wabitsch, A. (2023)
Increase in employment | +21.2% Albanesi, S., Dias da Silva,

A., Jimeno, J.F., Lamo, A.,
Wabitsch, A. (2023)

Table 9. Comparison of “Indicators” Scientific studies vs. grey literature. Authors’ own elaboration.

Aspect

Scientific Studies

Grey Literature

Employment Impact

Automation leads to sector-
specific shifts, with job creation in
high-skilled sectors and
displacement in routine, low-
skilled roles.

Focuses on macro-level risks,
emphasizing overall job losses,
particularly in emerging
economies and labour-intensive
industries.

Productivity Trends

Highlights productivity gains for
firms adopting automation,
driving labour demand in specific
sectors.

Emphasizes automation's
contribution to global productivity
growth and its role in economic
recovery.

Wage Trends

Automation creates wage
divergence, benefiting high-
skilled workers while reducing
wages for low-skilled workers.

Focuses on increasing inequality,
with automation widening the
wage gap and amplifying existing
disparities.

but provides limited guidance on
mitigation strategies.

Task and Job Role Shifts | Automation reduces routine tasks | Discusses the automatable nature
and increases demand for non- of routine tasks, with significant
routine cognitive tasks, supporting | risks for manual and low-skill
job polarization. roles across industries.

Regional Focus | Examines country- and sector- Highlights regional disparities,
level heterogeneity, noting with emerging economies facing
variations in automation’s impact | higher risks due to lower
based on adoption rates and technological readiness and
workforce characteristics. labour-market vulnerabilities.

Policy Implications | Focuses on understanding trends Emphasizes the need for

education reform, skill
development, and government
support to address automation’s
challenges.

Table 10. Overview of empirical studies — Indicators of Automation, Al, and Industry 4.0 Adoption’s
impact on various aspects of market. Authors’ own elaboration.

Indicator type Description Value Authors of the
study
Technology/loT/robotics | Share of firms adopting at 29% (2018, firm-level) Cirillo, V., Mina,
adoption least one 14.0 technology A., Riccei, A.
(IoT, robotics, etc.) (2024)
Introduction of advanced Positive; semi-elasticity of Aghion, P,,
tools and equipment into +0.04 Antonin, C.,
the manufacturing sector, Bunel, S.,
specifically through Jaravel, X.
imported intermediate (2023)
goods
Share of firms investing in 2.6% (2018, firm-level) Cirillo, V., Mina,
robotics A., Riccl, A.
(2024)
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Share of firms investing in

4.7% (2018, firm-level)

Cirillo, V., Mina,

Internet of Things A., Riccl, A.
(2024)
Impact on market Revenue share of Exceeds 50% in recent years | Tiwari, A.K.
share/industries automation-adopting firms (2022)
Productivity-driven market | Significant increase in market | Aghion, P.,
share gains by automating share for automating firms, Antonin, C.,
firms especially in international Bunel, S.,
markets Jaravel, X.
(2022)
Industries with the fastest Food processing in Poland: - | Wegrzyn, G.
robot growth 2.5 pp (2011-2018); (2020)
Automotive in Romania: +7.4
pp
ICT capital/investment ICT capital per worker €5,100 (average across Albinowski, M.,
countries) Lewandowski, P.
(2024)
Role of ICT technologies in | Positive in Spain; negative in | Chen, C.C.,
mitigating the effects of Finland (Nokia collapse); Frey, C.B.
robots limited elsewhere (2024)
Automation risk/barriers | Probability of job being 62,72% Casas, P,
automated (average) Roman, C.
(2023)
Barriers to automation High costs (56.12% of firms) | Valaskova, K.,
adoption and security risks (37.76 Nagy, M., Grecu,
G. (2024)
Automation adoption Proportion of firms 10-20% in manufacturing, 2- | Tiwari, A.K.
rate/ Automation degree | adopting automation 6% in services, 3-5% in (2022)
mining/utilities/construction
Degree of job automation 27,81% Casas, P,
potential (average) Roman, C.
(2023)
Key manufacturing sectors | Automotive industry in Wegrzyn, G.
with the highest robot Germany: 16% of (2020)
utilization employment (2018); Poland:
9.3% (up from 7.4% in 2011)
Adoption and effects of Automotive industry: highest | Aghion, P.,
automation in specific adoption, 35% of all Antonin, C.,
industries industrial robots used in this Bunel, S.,
sector Jaravel, X.
(2022)
Proportion of firms Approximately 25% of Aghion, P.,
adopting advanced manufacturing firms in Antonin, C.,
automation technologies, France adopted automation Bunel, S.,
such as robots or Al technologies by 2015 Jaravel, X.
systems (2022)
Proportion of firms 65.29% of surveyed firms Valaskova, K.,
implementing Industry 4.0 | have implemented or started | Nagy, M., Grecu,
components like Al, digital | implementing G. (2024)
twins, IoT
Robot Number of robots per 1,000 | 1.5 (average) Albinowski, M.,
exposure/penetration employees Lewandowski, P
Change in the operational Germany: 4 (2007); Norway: | Chen, C.C.,
stock of robots per 1,000 0.44 (2007) Frey, C. B

workers
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Increase in robot usage per | +4.6 robots per 1,000 workers | Dauth, W.,
1,000 workers (1994-2014) Findeisen, S.,
Suedekum, J.,
Woessner, N.
(2021)
Number of robots per Global average (2018): 99; Wegrzyn, G.
10,000 employees in Europe: 114; Germany: 322; (2020)
manufacturing sectors Poland: 42; Slovakia: 165;
Hungary: 84
Growth in the number of 2011-2018 global growth: Wegrzyn, G.
robots installed annually in | from 159,000 to 422,000 (2020)
manufacturing units annually (+165%). EU:
Germany +26% (2018)
Variation in robot adoption | South Korea: 710 Wegrzyn, G.
by country robots/10,000 employees; (2020)
Slovakia: 165; Poland: 4
Number of robots per 1,000 | 3.1 robots per 1,000 workers Aghion, P,,
workers in French in 2015 Antonin, C.,
manufacturing industries Bunel, S.,
Jaravel, X.
(2022)
Increase in robots per 1,000 | 7.6 robots (baseline, 2014), Cords, D.,
workers scenario adds 1 more robot Prettner, K.
(2022)
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